Differentiating sin(x) from First Principles
Key Questions
-
Answer:
d/dxsinx=cosxddxsinx=cosx Explanation:
By definition of the derivative:
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h So with
f(x) = sinx we have;f'(x)=lim_(h rarr 0) ( sin(x+h) - sin x ) / h Using
sin (A+B)=sinAcosB+sinBcosA we getf'(x)=lim_(h rarr 0) ( sinxcos h+sin hcosx - sin x ) / h \ \ \ \ \ \ \ \ \=lim_(h rarr 0) ( sinx(cos h-1)+sin hcosx ) / h \ \ \ \ \ \ \ \ \=lim_(h rarr 0) ( (sinx(cos h-1))/h+(sin hcosx) / h ) \ \ \ \ \ \ \ \ \=lim_(h rarr 0) (sinx(cos h-1))/h+lim_(h rarr 0)(sin hcosx) / h \ \ \ \ \ \ \ \ \=(sinx)lim_(h rarr 0) (cos h-1)/h+(cosx)lim_(h rarr 0)(sin h) / h We know have to rely on some standard limits:
lim_(h rarr 0)sin h/h =1 , andlim_(h rarr 0)(cos h-1)/h =0 And so using these we have:
f'(x)=0+(cosx)(1) =cosx Hence,
d/dxsinx=cosx
Questions
Differentiating Trigonometric Functions
-
Limits Involving Trigonometric Functions
-
Intuitive Approach to the derivative of y=sin(x)
-
Derivative Rules for y=cos(x) and y=tan(x)
-
Differentiating sin(x) from First Principles
-
Special Limits Involving sin(x), x, and tan(x)
-
Graphical Relationship Between sin(x), x, and tan(x), using Radian Measure
-
Derivatives of y=sec(x), y=cot(x), y= csc(x)
-
Differentiating Inverse Trigonometric Functions