How do you find the derivative of tanx/(1+sinx)?
1 Answer
Jul 3, 2017
Explanation:
"differentiate using the "color(blue)"quotient rule"
"given " f(x)=(g(x))/(h(x))" then"
f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"
g(x)=tanxrArrg'(x)=sec^2x
h(x)=1+sinxrarrh'(x)=cosx
rArrf'(x)=((1+sinx).sec^2x-tanxcosx)/(1+sinx)^2
color(white)(rArrf'(x))=((1+sinx)sec^2x-sinx)/(1+sinx)^2