How do you find the derivative of sinx/x?

1 Answer
Apr 16, 2015

You can use the quotient rule or the product rule.

Quotient Rule
h(x) = f(x)/g(x)
h'(x) = (g(x)*f'(x) - f(x)*g'(x))/((g(x))^2)

h(x) = sinx/x
h'(x) = (x*(sinx)' - sinx*(x)')/(x^2) = (xcosx - sinx)/x^2
= cosx/x - sinx/x^2

Product Rule
h(x) = f(x)*g(x)
h(x) = f(x)*g'(x) + g(x)*f'(x)

h(x) = 1/x*sinx
h'(x) = 1/x*(sinx)' + sinx*(1/x)' = cosx/x - (sinx)/x^2

As you can see, you still get the same result in the end.