How do you differentiate 2^sin(pi*x)?

1 Answer
Oct 29, 2016

The derivative is dy/dx=pi*ln2*cos(pix)*2^(sin(pix))

Explanation:

Let y=2^(sin(pix))
Taking the logarithms on both sides

lny=ln(2^(sin(pix)))=sin(pix)ln2

So taking the derivatives, we get
1/ydy/dx=ln(2)*pi*cos(pix)
So, dy/dx=y*ln(2)*pi*cos(pix)=pi*ln2*cos(pix)*2^(sin(pix))