How do you differentiate x^sin(x)?

1 Answer
Oct 19, 2016

(dy)/(dx)=(x^sinx)(cosxlnx+sinx/x)

Explanation:

let
y=x^sinx

take natural logarithms to both sides and simplify

lny=lnx^sinx

=>lny=sinxlnx

differentiate both sides wrt x

d/(dx)(lny)=d/(dx)(sinxlnx)

using implicit differentiation on the LHS; product rule on RHS

=1/y(dy)/dx=cosxlnx+sinx/x

=>(dy)/(dx)=y(cosxlnx+sinx/x)

substituting back for y

(dy)/(dx)=(x^sinx)(cosxlnx+sinx/x)