Question #042b9

1 Answer
Feb 4, 2017

f'(x)=(2x)^x(ln(2x)+1)

Explanation:

f(x)=(2x)^x

Take the natural logarithm of both sides:

ln(f(x))=ln((2x)^x)

The right-hand side can be rewritten using ln(a^b)=bln(a):

ln(f(x))=xln(2x)

Differentiate both sides of the equation. The chain and product rules will be used.

1/f(x)f'(x)=ln(2x)(d/dxx)+x(d/dxln(2x))

1/(2x)^xf'(x)=ln(2x)+x(1/(2x))(d/dx2x)

1/(2x)^xf'(x)=ln(2x)+1

f'(x)=(2x)^x(ln(2x)+1)