Question #042b9
1 Answer
Feb 4, 2017
Explanation:
f(x)=(2x)^x
Take the natural logarithm of both sides:
ln(f(x))=ln((2x)^x)
The right-hand side can be rewritten using
ln(f(x))=xln(2x)
Differentiate both sides of the equation. The chain and product rules will be used.
1/f(x)f'(x)=ln(2x)(d/dxx)+x(d/dxln(2x))
1/(2x)^xf'(x)=ln(2x)+x(1/(2x))(d/dx2x)
1/(2x)^xf'(x)=ln(2x)+1
f'(x)=(2x)^x(ln(2x)+1)