Question #e7a10
1 Answer
Explanation:
The definition of the derivative of
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So Let
\ \ \ \ \ f(x+h) = (2(x+h)+3)/(3(x+h)+2)
:. f(x+h) = (2x+2h+3)/(3x+3h+2)
And so the derivative of
\ \ \ \ \ dy/dx = lim_(h rarr 0) ( (2x+2h+3)/(3x+3h+2) - (2x+3)/(3x+2) ) / h
:. dy/dx = lim_(h rarr 0) ( ((2x+2h+3)(3x+2)-(2x+3)(3x+3h+2))/((3x+3h+2)(3x+2)) ) / h
:. dy/dx = lim_(h rarr 0) ((6x^2+6hx+9x+4x+4h+6)-(6x^2+6hx+4x+9x+9h+6))/(h(3x+3h+2)(3x+2))
:. dy/dx = lim_(h rarr 0) ((6x^2+6hx+9x+4x+4h+6-6x^2-6hx-4x-9x-9h-6))/(h(3x+3h+2)(3x+2))
:. dy/dx = lim_(h rarr 0) (-5h)/(h(3x+3h+2)(3x+2))
:. dy/dx = lim_(h rarr 0) (-5)/((3x+3h+2)(3x+2))
:. dy/dx = (-5)/((3x+2)(3x+2))
:. dy/dx = (-5)/((3x+2)^2)