How do you differentiate y = 1/2 x + 1/4sin2x?

1 Answer
Dec 20, 2016

dy/dx = cos^2x

Explanation:

This can be rewritten as follows using the identity sin2theta = 2sinthetacostheta and a little algebra.

y = 1/2x + 1/4(2sinxcosx)

y = 1/2x + 1/2sinxcosx

y = 1/2(x + sinxcosx)

2y = x + sinxcosx

Use implicit differentiation and the product rule to differentiate.

2(dy/dx) = 1 + cosx(cosx) + sinx(-sinx)

2(dy/dx) = 1 + cos^2x - sin^2x

Use the identity cos^2theta + sin^2theta = 1 ->1 - sin^2theta = cos^2theta:

2(dy/dx) = cos^2x + cos^2x

2(dy/dx) = 2cos^2x

dy/dx = (2cos^2x)/2

dy/dx= cos^2x

Hopefully this helps!