How do you find the derivative of y = sqrt(1-sin^2x)y=1sin2x?

1 Answer
Jan 22, 2017

y' = -sinx

Explanation:

By the pythagorean identity sin^2x + cos^2x = 1:

y = sqrt(cos^2x)

y= cosx

This can be differentiated as -sinx, but here's proof using limits.

y' = lim_(h->0) (f(x + h)- f(x))/h

y' = lim_(h->0) (cos(x+ h) - cosx)/h

y' = lim_(h->0) (cosxcos h - sinxsin h - cosx)/h

y' = lim_(h->0) (cosxcos h - cosx)/h - (sinxsin h)/h

y' = lim_(h-> 0) (cosx(cos h - 1))/h - lim_(h->0) (sinxsin h)/h

y' = cosxlim_(h->0)(cos h - 1)/h - sinxlim_(h->0) (sin h)/h

Now use the famous trig limits:

•lim_(x->0) (cosx - 1)/x = 0
•lim_(x->0) sinx/x = 1

y' = cosx(0) - sinx(1)

y' = -sinx

Hopefully this helps!