How do you find the derivative of the function #y=cos((1-e^(2x))/(1+e^(2x)))#? Calculus Differentiating Trigonometric Functions Differentiating sin(x) from First Principles 1 Answer Sonnhard May 27, 2018 #y'=4*e^(2*x)/(1+e^(2+x))^2*sin((1-e^(2x))/(1+e^(2*x)))# Explanation: Using the chain rule, then we get #y'=-sin((1-e^(2x))/(1+e^(2x)))*(-2e^(2x)(1+e^(2x))-(1-e^(2x))*e^(2x))/(1+e^(2x))^2# #y=-sin((1-e^(2x))/(1+e^(2x)))*(2e^(2x)(-1-e^(2x)-1+e^(2x))/(1+e^(2x))^2)# #y'=4e^(2x)/(1+e^(2x))^2*sin((1-e^(2x))/(1+e^(2x)))# Answer link Related questions How do you differentiate #f(x)=sin(x)# from first principles? What is the derivative of #y=3sin(x) - sin(3x)#? How do you find dy/dx if #x + tan(xy) = 0#? How do you differentiate #f(x)=2secx+(2e^x)(tanx)#? How do you find the derivate for #y = pisinx - 4cosx#? How do you find the derivative of #f(t) = t^2sin t#? What is the derivative of #sin^2(lnx)#? How do you compute the 200th derivative of #f(x)=sin(2x)#? How do you find the derivative of #sin(x^2+1)#? How do you find the derivative of #sin(x^3)#? See all questions in Differentiating sin(x) from First Principles Impact of this question 15741 views around the world You can reuse this answer Creative Commons License