How do you find the derivative of the function y=cos((1-e^(2x))/(1+e^(2x)))?

1 Answer
May 27, 2018

y'=4*e^(2*x)/(1+e^(2+x))^2*sin((1-e^(2x))/(1+e^(2*x)))

Explanation:

Using the chain rule, then we get
y'=-sin((1-e^(2x))/(1+e^(2x)))*(-2e^(2x)(1+e^(2x))-(1-e^(2x))*e^(2x))/(1+e^(2x))^2

y=-sin((1-e^(2x))/(1+e^(2x)))*(2e^(2x)(-1-e^(2x)-1+e^(2x))/(1+e^(2x))^2)
y'=4e^(2x)/(1+e^(2x))^2*sin((1-e^(2x))/(1+e^(2x)))