How do you find the derivative of the function y=cos((1-e^(2x))/(1+e^(2x)))? Calculus Differentiating Trigonometric Functions Differentiating sin(x) from First Principles 1 Answer Sonnhard May 27, 2018 y'=4*e^(2*x)/(1+e^(2+x))^2*sin((1-e^(2x))/(1+e^(2*x))) Explanation: Using the chain rule, then we get y'=-sin((1-e^(2x))/(1+e^(2x)))*(-2e^(2x)(1+e^(2x))-(1-e^(2x))*e^(2x))/(1+e^(2x))^2 y=-sin((1-e^(2x))/(1+e^(2x)))*(2e^(2x)(-1-e^(2x)-1+e^(2x))/(1+e^(2x))^2) y'=4e^(2x)/(1+e^(2x))^2*sin((1-e^(2x))/(1+e^(2x))) Answer link Related questions How do you differentiate f(x)=sin(x) from first principles? What is the derivative of y=3sin(x) - sin(3x)? How do you find dy/dx if x + tan(xy) = 0? How do you differentiate f(x)=2secx+(2e^x)(tanx)? How do you find the derivate for y = pisinx - 4cosx? How do you find the derivative of f(t) = t^2sin t? What is the derivative of sin^2(lnx)? How do you compute the 200th derivative of f(x)=sin(2x)? How do you find the derivative of sin(x^2+1)? How do you find the derivative of sin(x^3)? See all questions in Differentiating sin(x) from First Principles Impact of this question 15471 views around the world You can reuse this answer Creative Commons License