How do you find the derivative of 1/sinx?
1 Answer
Nov 10, 2016
d/dx (1/sinx)= -cotx cscx
Explanation:
There are several methods to do this:
Let
Method 1 - Chain Rule
Rearrange as
dy/dx=(dy/(du))((du)/dx)
:. dy/dx = (-1/u^2)(cosx)
:. dy/dx = -cosx/sin^2x
:. dy/dx = -cosx/sinx * 1/sinx
:. dy/dx = -cotx cscx
Method 2 - Quotient Rule
d/dx(u/v) = (v(du)/dx-u(dv)/dx)/v^2
:. dy/dx = ( (sinx)(0) - (1)(cosx) ) / (sinx)^2
:. dy/dx = -cosx / sin^2x
:. dy/dx = -cosx/sinx * 1/sinx
:. dy/dx = -cotx cscx