How do you find the derivative of sqrt(xtanx)?

1 Answer
Feb 5, 2017

d/dx sqrt(xtanx) = (x +tanx +xtan^2x)/(2sqrt(xtanx))

Explanation:

Use the chain rule:

d/dx f(y(x)) = (df)/dy * dy/dx

So, given:

f(x) = sqrt(xtanx)

we pose y=x tanx, so f(y) = sqrt(y) and (df)/dy = 1/(2sqrty) and we have:

d/dx sqrt(xtanx) = 1/(2sqrt(xtanx)) d/dx (xtanx)

Now we calculate this derivative using the product rule:

d/dx (xtanx) = (d/dx x) tanx + x (d/dx tanx)

d/dx (xtanx) = tanx + x / cos^2x

we try to simplify this expression using the trigonometric identity:

1/cos^2x = 1+tan^2x

d/dx (xtanx) = x +tanx +xtan^2x

Putting it together:

d/dx sqrt(xtanx) = (x +tanx +xtan^2x)/(2sqrt(xtanx))