Trigonometric Form of Complex Numbers
Key Questions
-
DeMoivre's Theorem expand's on Euler's formula:
e^(ix)=cosx+isinx DeMoivre's Theorem says that:
(e^(ix))^n=(cosx+isinx)^n (e^(ix))^n=e^(i nx) e^(i nx)=cos(nx)+isin(nx) cos(nx)+isin(nx)-=(cosx+isinx)^n
Example:
cos(2x)+isin(2x)-=(cosx+isinx)^2 (cosx+isinx)^2=cos^2x+2icosxsinx+i^2sin^2x However,
i^2=-1 (cosx+isinx)^2=cos^2x+2icosxsinx-sin^2x Resolving for real and imaginary parts of
x :
cos^2x-sin^2x+i(2cosxsinx) Comparing to
cos(2x)+isin(2x) cos(2x)=cos^2x-sin^2x
sin(2x)=2sinxcosx
These are the double angle formulae forcos andsin This allows us to expand
cos(nx) orsin(nx) in terms of powers ofsinx andcosx DeMoivre's theorem can be taken further:
Givenz=cosx+isinx z^n=cos(nx)+isin(nx) z^(-n)=(cosx+isinx)^(-n)=1/(cos(nx)+isin(nx)) z^(-n)=1/(cos(nx)+isin(nx))xx(cos(nx)-isin(nx))/(cos(nx)-isin(nx))=(cos(nx)-isin(nx))/(cos^2(nx)+sin^2(nx))=cos(nx)-isin(nx) z^n+z^(-n)=2cos(nx)
z^n-z^(-n)=2isin(nx) So, if you wanted to express
sin^nx in terms of multiple angles ofsinx andcosx :
(2isinx)^n=(z-1/z)^n Expand and simply, then input values for
z^n+z^(-n) andz^n-z^(-n) where necessary.However, if it involved
cos^nx , then you would do(2cosx)^n=(z+1/z)^n and follow the similar steps. -
Depending on what you need to do with your complex numbers, the trigonometric form can be very useful or very thorny.
For example, let
z_1=1+i ,z_2=sqrt(3)+i andz_3=-1+i sqrt{3} .
Let's compute the two trigonometric forms:
theta_1=arctan(1)=pi/4 andrho_1=sqrt{1+1}=sqrt{2}
theta_2=arctan(1/sqrt{3})=pi/6 andrho_2=sqrt{3+1}=2
theta_3=pi + arctan(-sqrt{3})=2/3 pi andrho_3=sqrt{1+3}=2
So the trigonometric forms are:
z_1=sqrt{2}(cos(pi/4)+i sin(pi/4))
z_2=2(cos(pi/6)+i sin(pi/6))
z_3=2(cos(2/3 pi)+i sin(2/3 pi)) Addition
Let's say you want to computez_1+z_2+z_3 . If you use the algebraic form, you get
z_1+z_2+z_3=(1+i)+(sqrt{3}+i)+(-1+i sqrt{3})=sqrt{3}+i(2+sqrt{3})
Quite easy. Now try with the trigonometric form...
z_1+z_2+z_3=sqrt{2}(cos(pi/4)+i sin(pi/4))+2(cos(pi/6)+i sin(pi/6))+2(cos(2/3 pi)+i sin(2/3 pi))
it turns out that the shortest way to add these two expressions is to solve cosines and sines, which means... turning to the algebraic form!
The algebraic form is often the best form to choose in adding complex numbers.Multiplication
Now we try to computez_1*z_2*z_3 . Using algebraic forms requires a lot of annoying computations. But solving this product with the trigonometric forms is simpler:
z_1*z_2*z_3=sqrt{2}(cos(pi/4)+i sin(pi/4))*2(cos(pi/6)+i sin(pi/6))*2(cos(2/3 pi)+i sin(2/3 pi))=4 sqrt{2}(cos(pi/4+pi/6+2/3 pi)+i sin(pi/4+pi/6+2/3 pi))=4 sqrt{2}(cos(13/12 pi)+i sin(13/12 pi))
The ingredients to prove that the second equality holds come from trigonometry: the two addition formulae
sin(alpha + beta)=sin(alpha)cos(beta)+sin(beta)cos(alpha)
cos(alpha + beta)=cos(alpha)cos(beta)-sin(alpha)sin(beta)
Multiplication of complex numbers is even cleaner (but conceptually not easier) in exponential form.In some sense, the trigonometric form is a sort of in-between form between the algebraic and the exponential forms. The trigonometric form is the way to switch between these two. In this sense it's a sort of a "dictionary" to "translate" forms.
-
Let
z=x+iy a complex number in algebraic form.z=r(cosphi+isinphi) is its trigonometric form, where:r=sqrt(x^2+y^2) is the modulus of the number and- if
x>0
phi=arctan(y/x) ,- if
x<0
phi=arctan(y/x)+pi ,- if
x=0 andy>0
phi=pi/2 ,- if
x=0 andy<0
phi=3/2pi - if
x=y=0
It's all zero!
- if