How do you express the complex number in trigonometric form: 1-(sqrt 3)i?

1 Answer
Mar 17, 2018

2(cos(pi/3)-isin(pi/3))

Explanation:

"to convert to "color(blue)"trigonometric form"

"that is "r(costheta+isintheta)" where"

•color(white)(x)r=sqrt(x^2+y^2)

•color(white)(x)theta=tan^-1(y/x)color(white)(x) -pi < theta <=pi

"here "x=1" and "y=-sqrt3

rArrr=sqrt(1^2+(-sqrt3)^2)=2

theta=tan^-1(-sqrt3)=-pi/3

rArr2(cos(-pi/3)+isin(-pi/3))

=2(cos(pi/3)-isin(pi/3))

rArr1-sqrt3i=2(cos(pi/3)-isin(pi/3))