What is DeMoivre's theorem?

1 Answer
Mar 5, 2018

DeMoivre's Theorem expand's on Euler's formula:
e^(ix)=cosx+isinxeix=cosx+isinx

DeMoivre's Theorem says that:

  • (e^(ix))^n=(cosx+isinx)^n(eix)n=(cosx+isinx)n
  • (e^(ix))^n=e^(i nx)(eix)n=einx
  • e^(i nx)=cos(nx)+isin(nx)einx=cos(nx)+isin(nx)
  • cos(nx)+isin(nx)-=(cosx+isinx)^ncos(nx)+isin(nx)(cosx+isinx)n

Example:
cos(2x)+isin(2x)-=(cosx+isinx)^2cos(2x)+isin(2x)(cosx+isinx)2

(cosx+isinx)^2=cos^2x+2icosxsinx+i^2sin^2x(cosx+isinx)2=cos2x+2icosxsinx+i2sin2x

However, i^2=-1i2=1

(cosx+isinx)^2=cos^2x+2icosxsinx-sin^2x(cosx+isinx)2=cos2x+2icosxsinxsin2x

Resolving for real and imaginary parts of xx:
cos^2x-sin^2x+i(2cosxsinx)cos2xsin2x+i(2cosxsinx)

Comparing to cos(2x)+isin(2x)cos(2x)+isin(2x)

cos(2x)=cos^2x-sin^2xcos(2x)=cos2xsin2x
sin(2x)=2sinxcosxsin(2x)=2sinxcosx
These are the double angle formulae for coscos and sinsin

This allows us to expand cos(nx)cos(nx) or sin(nx)sin(nx) in terms of powers of sinxsinx and cosxcosx

DeMoivre's theorem can be taken further:
Given z=cosx+isinxz=cosx+isinx

z^n=cos(nx)+isin(nx)zn=cos(nx)+isin(nx)

z^(-n)=(cosx+isinx)^(-n)=1/(cos(nx)+isin(nx))zn=(cosx+isinx)n=1cos(nx)+isin(nx)

z^(-n)=1/(cos(nx)+isin(nx))xx(cos(nx)-isin(nx))/(cos(nx)-isin(nx))=(cos(nx)-isin(nx))/(cos^2(nx)+sin^2(nx))=cos(nx)-isin(nx)zn=1cos(nx)+isin(nx)×cos(nx)isin(nx)cos(nx)isin(nx)=cos(nx)isin(nx)cos2(nx)+sin2(nx)=cos(nx)isin(nx)

z^n+z^(-n)=2cos(nx)zn+zn=2cos(nx)
z^n-z^(-n)=2isin(nx)znzn=2isin(nx)

So, if you wanted to express sin^nxsinnx in terms of multiple angles of sinxsinx and cosxcosx:
(2isinx)^n=(z-1/z)^n(2isinx)n=(z1z)n

Expand and simply, then input values for z^n+z^(-n)zn+zn and z^n-z^(-n)znzn where necessary.

However, if it involved cos^nxcosnx, then you would do (2cosx)^n=(z+1/z)^n(2cosx)n=(z+1z)n and follow the similar steps.