How do you simplify 4(cos(pi/3)+isin(pi/3))*7(cos((2pi)/3)+isin((2pi)/3)) and express the result in rectangular form?

1 Answer
Dec 31, 2016

4(cos(pi/3)+isin(pi/3))*7(cos((2pi)/3)+isin((2pi)/3)) = -28

Explanation:

Note that:

e^(itheta) = cos theta + i sin theta

So we have:

(cos alpha + i sin alpha)(cos beta + i sin beta) = e^(ialpha)*e^(ibeta)

color(white)((cos alpha + i sin alpha)(cos beta + i sin beta)) = e^(i(alpha+beta))

color(white)((cos alpha + i sin alpha)(cos beta + i sin beta)) = cos(alpha+beta) + i sin(alpha+beta)

So in our example:

4(cos(pi/3)+isin(pi/3))*7(cos((2pi)/3)+isin((2pi)/3))

= 28(cos(pi/3+(2pi)/3)+isin(pi/3+(2pi)/3))

= 28(cos(pi)+isin(pi))

= 28(-1+i*0)

= -28