x=cosalpha+isinalphax=cosα+isinα,y=cosbeta+isinbetay=cosβ+isinβ,z=cosgamma+isingammaz=cosγ+isinγ andx+y+z=xyzx+y+z=xyz. prove that cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=1cos(βγ)+cos(γα)+cos(αβ)=1?

1 Answer
Nov 5, 2016

This proposition is false, e.g. when alpha = 0α=0, beta = pi/2β=π2, gamma=-pi/2γ=π2

Explanation:

Let:

{ (alpha = 0), (beta = pi/2), (gamma = -pi/2) :}

Then:

{ (x = 1), (y = i), (z = -i) :}

and:

x + y + z = 1+i-i = 1 = 1*i*(-i) = xyz

With these values, we find:

cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)

=cos(pi)+cos(-pi/2)+cos(-pi/2)

= -1+0+0=-1 != 1