x=cosalpha+isinalphax=cosα+isinα,y=cosbeta+isinbetay=cosβ+isinβ,z=cosgamma+isingammaz=cosγ+isinγ andx+y+z=xyzx+y+z=xyz. prove that cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=1cos(β−γ)+cos(γ−α)+cos(α−β)=1?
1 Answer
Nov 5, 2016
This proposition is false, e.g. when
Explanation:
Let:
{ (alpha = 0), (beta = pi/2), (gamma = -pi/2) :}
Then:
{ (x = 1), (y = i), (z = -i) :}
and:
x + y + z = 1+i-i = 1 = 1*i*(-i) = xyz
With these values, we find:
cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)
=cos(pi)+cos(-pi/2)+cos(-pi/2)
= -1+0+0=-1 != 1