#x=cosalpha+isinalpha#,#y=cosbeta+isinbeta#,#z=cosgamma+isingamma# and#x+y+z=xyz#. prove that #cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=1#?
1 Answer
Nov 5, 2016
This proposition is false, e.g. when
Explanation:
Let:
#{ (alpha = 0), (beta = pi/2), (gamma = -pi/2) :}#
Then:
#{ (x = 1), (y = i), (z = -i) :}#
and:
#x + y + z = 1+i-i = 1 = 1*i*(-i) = xyz#
With these values, we find:
#cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)#
#=cos(pi)+cos(-pi/2)+cos(-pi/2)#
#= -1+0+0=-1 != 1#