How do I find the trigonometric form of the complex number 3-4i?

1 Answer
Mar 22, 2018

The trigonometric form is =5(cos(-0.93)+isin(-0.93))

Explanation:

Any complex number

z=a+ib

can be converted to the polar form

z=|z|(costheta+i sintheta)

Where,

costheta=a/(|z|)

and

sintheta=b/(|z|)

Here,

z=3-4i

|z|=sqrt((3)^2+(-4)^2)=sqrt25=5

costheta=3/5=0.6

sintheta=-4/5=-0.8

Therefore,

theta=arcsin(-0.8)=-0.93rad, [mod 2pi]

z=5(cos(-0.93)+isin(-0.93))