How do you express the complex number in trigonometric form: #-7-5i#?
2 Answers
Explanation:
Any
Explanation:
#"to convert from "color(blue)"complex to trig. form"#
#"that is "x+yitor(costheta+isintheta)" using"#
#•color(white)(x)r=sqrt(x^2+y^2)#
#•color(white)(x)theta=tan^-1(y/x)color(white)(x)-pi < theta<=pi#
#"here "x=-7" and "y=-5#
#rArrr=sqrt((-7)^2+(-5)^2)=sqrt74#
#-7-5i" is in the third quadrant so we must ensure "theta#
#"is in the third quadrant"#
#theta=tan^-1(5/7)=0.62larrcolor(blue)" related acute angle"#
#rArrtheta=-pi+0.62=-2.52larrcolor(blue)" in third quadrant"#
#rArr-7-5itosqrt74(cos(-2.52)+isin(-2.52))#
#=sqrt74(cos(2.52)-isin(2.52))#