Solving Separable Differential Equations
Key Questions
-
A separable equation typically looks like:
{dy}/{dx}={g(x)}/{f(y)}dydx=g(x)f(y) .by multiplying by
dxdx and byf(y)f(y) to separatexx 's andyy 's,Rightarrow f(y)dy=g(x)dx⇒f(y)dy=g(x)dx by integrating both sides,
Rightarrow int f(y)dy=int g(x)dx⇒∫f(y)dy=∫g(x)dx ,which gives us the solution expressed implicitly:
Rightarrow F(y)=G(x)+C⇒F(y)=G(x)+C ,where
FF andGG are antiderivatives offf andgg , respectively.For an example of a separable equation with an initial condition, please watch this video:
-
A separable equation typically looks like:
{dy}/{dx}={g(x)}/{f(y)}dydx=g(x)f(y) .By multiplying by
dxdx and byg(y)g(y) to separatexx 's andyy 's,
Rightarrow f(y)dy=g(x)dx⇒f(y)dy=g(x)dx By integrating both sides,
Rightarrow int f(y)dy=int g(x)dx⇒∫f(y)dy=∫g(x)dx ,
which gives us the solution expressed implicitly:Rightarrow F(y)=G(x)+C⇒F(y)=G(x)+C ,
whereFF andGG are antiderivatives offf andgg , respectively.For more details, please watch this video:
Questions
Applications of Definite Integrals
-
Solving Separable Differential Equations
-
Slope Fields
-
Exponential Growth and Decay Models
-
Logistic Growth Models
-
Net Change: Motion on a Line
-
Determining the Surface Area of a Solid of Revolution
-
Determining the Length of a Curve
-
Determining the Volume of a Solid of Revolution
-
Determining Work and Fluid Force
-
The Average Value of a Function