What is a solution to the differential equation dy/dx=(2x)/ydydx=2xy?

2 Answers

I found: y=+-sqrt(2x+c)y=±2x+c

Explanation:

We can try separating and write:
ydy=2xdxydy=2xdx
then integrate:
intydy=int2xdxydy=2xdx
y^2/2=x^2+cy22=x2+c
or:
y^2=2x^2+cy2=2x2+c
and:
y=+-sqrt(2x^2+c)y=±2x2+c

Jul 13, 2016

y = pm sqrt( 2x^2 + C)y=±2x2+C

Explanation:

dy/dx=(2x)/ydydx=2xy

y \ dy/dx=2x

int \ y \ dy/dx \ dx=int \ 2x \ dx

int \ y \ dy=int \ 2x \ dx

y^2/2=2 * x^2/2 + C

y^2/2 = x^2 + C

y^2 = 2x^2 + C

y = pm sqrt( 2x^2 + C)