How do you find the general solution to dy/dx+e^(x+y)=0dydx+ex+y=0?

1 Answer
Jul 24, 2016

y = ln ( 1/(e^x + C) )y=ln(1ex+C)

Explanation:

dy/dx+e^(x+y)=0dydx+ex+y=0

this is separable

dy/dx= - e^(x+y)dydx=ex+y

dy/dx= - e^x e^ydydx=exey

e^(-y) dy/dx= - e^xeydydx=ex

int\ e^(-y) dy/dx \ dx=int - e^x \ dx

int\ e^(-y) \ dy=- int e^x \ dx

-e^(-y) =- e^x + C

e^(-y) = e^x + C

e^(y) = 1/(e^x + C)

y = ln ( 1/(e^x + C) )