What is a solution to the differential equation dy/dx=x+ydydx=x+y?

1 Answer
Oct 19, 2016

y = C_1e^x-x-1y=C1exx1

Explanation:

Let u = x + yu=x+y

=> (du)/dx = d/dx(x+y) = 1+dy/dxdudx=ddx(x+y)=1+dydx

=> dy/dx = (du)/dx-1dydx=dudx1

Thus, making the substitutions into our original equation,

(du)/dx-1 = ududx1=u

=> (du)/(u+1) = dxduu+1=dx

=> int(du)/(u+1)=intdxduu+1=dx

=> ln(u+1) = x + C_0ln(u+1)=x+C0

=> e^(ln(u+1)) = e^(x+C_0)eln(u+1)=ex+C0

=> u+1 = C_1e^x" "u+1=C1ex (where C_1 = e^(C_0)C1=eC0)

Substituting x+y = ux+y=u back in,

=> x + y + 1 = C_1e^xx+y+1=C1ex

:. y = C_1e^x-x-1