First, expand the terms in parenthesis on each side of the equation:
#color(red)(3)(x + 7) = -2x - (3x + 3)#
#(color(red)(3) xx x) + (color(red)(3) xx 7) = -2x - 3x - 3#
#3x + 21 = (-2 - 3)x - 3#
#3x + 21 = -5x - 3#
Next, subtract #color(red)(21)# and add #color(blue)(5x)# to each side of the equation to isolate the #x# term while keeping the equation balanced:
#3x + 21 - color(red)(21) + color(blue)(5x) = -5x - 3 - color(red)(21) + color(blue)(5x)#
#3x + color(blue)(5x) + 21 - color(red)(21) = -5x + color(blue)(5x) - 3 - color(red)(21)#
#(3 + 5)x + 0 = 0 - 24#
#8x = -24#
Now, divide each side of the equation by #color(red)(8)# to solve for #x# while keeping the equation balanced:
#(8x)/color(red)(8) = -24/color(red)(8)#
#(color(red)(cancel(color(black)(8)))x)/cancel(color(red)(8)) = -3#
#x = -3#