Points #(7 ,1 )# and #(5 ,9 )# are #(3 pi)/4 # radians apart on a circle. What is the shortest arc length between the points?

1 Answer
Jul 15, 2018

#color(brown)("Length of shortest arc " (AB) = r * theta =10.5153#

Explanation:

www.bbc.co.uk

https://www.pinterest.co.uk/pin/353603008223483005/?lp=true

#"Point " A (7,1), " Point " B(5,9), hat (AOB) = theta = ((3pi) / 4)^c#

To find arc length S.

#"Chord Length " bar (AB) = sqrt ((7-5)^2 + (1-9)^2) = sqrt 68#

#hat (AOM) = hat (AOB) / 2 = (3pi)/8#

#bar(OA) = r = (AM) / sin (AOM) = (sqrt 68 / 2) / sin ((3pi)/8) = 4.4628#

#color(brown)("Length of shortest arc " (AB) = r * theta = 4.4628 * ((3pi)/4) = 10.5153#