2x^2+12x-14=02x2+12x−14=0
rarr2x^2+12x=14→2x2+12x=14
rarr x^2+6x=7→x2+6x=7
Now to "complete the square":
If x^2+6xx2+6x are the first two terms of the expansion of a squared binomial: (x+a)^2 = x^2+2ax+a^2(x+a)2=x2+2ax+a2
then 2ax2ax must equal 6x6x;
that is a=3a=3 and a^2=9a2=9
To "complete the square" we must add color(magenta)(9)9 to the expression,
but we can only legally do this if we add color(magenta)99 to both sides of the equation:
color(white)("XXX")x^2+6xcolor(magenta)(+9) = 7color(magenta)(+9)XXXx2+6x+9=7+9
color(white)("XXX")rarr (x+3)^2=16XXX→(x+3)2=16
color(white)("XXX")rarr x+3=+-4XXX→x+3=±4
color(white)("XXX")rarr x=-3+-4XXX→x=−3±4
color(white)("XXX")XXXwhich can be written as: x=-7color(white)("X")orcolor(white)("X")x=1x=−7XorXx=1