How do you solve 2x^2 + 12x − 14 = 02x2+12x14=0 by completing the square?

1 Answer
Feb 12, 2017

x=-7color(white)("XX")orcolor(white)("XX")x=+1x=7XXorXXx=+1

Explanation:

2x^2+12x-14=02x2+12x14=0

rarr2x^2+12x=142x2+12x=14

rarr x^2+6x=7x2+6x=7

Now to "complete the square":
If x^2+6xx2+6x are the first two terms of the expansion of a squared binomial: (x+a)^2 = x^2+2ax+a^2(x+a)2=x2+2ax+a2
then 2ax2ax must equal 6x6x;
that is a=3a=3 and a^2=9a2=9

To "complete the square" we must add color(magenta)(9)9 to the expression,
but we can only legally do this if we add color(magenta)99 to both sides of the equation:
color(white)("XXX")x^2+6xcolor(magenta)(+9) = 7color(magenta)(+9)XXXx2+6x+9=7+9

color(white)("XXX")rarr (x+3)^2=16XXX(x+3)2=16

color(white)("XXX")rarr x+3=+-4XXXx+3=±4

color(white)("XXX")rarr x=-3+-4XXXx=3±4

color(white)("XXX")XXXwhich can be written as: x=-7color(white)("X")orcolor(white)("X")x=1x=7XorXx=1