Verify the identity sin x cos x(tan x + cot x) = 1 ?
2 Answers
Mar 21, 2018
Verified below
Explanation:
Using the identities:
Start:
Mar 21, 2018
We seek to prove that:
sin x cos x(tan x + cot x) -= 1
Consider the LHS:
LHS -= sin x cos x(tan x + cot x)
\ \ \ \ \ \ \ \ = sin x cos x(sinx/cosx + cosx/sinx)
\ \ \ \ \ \ \ \ = sin x cos x((sinxsinx + cosxcosx)/(sinxcosx))
\ \ \ \ \ \ \ \ = sin x cos x((sin^2x + cos^2x)/(sinxcosx))
\ \ \ \ \ \ \ \ = sin^2x + cos^2x
\ \ \ \ \ \ \ \ -= 1 \ \ \ QED