How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1(1cos2x)(1+cot2x)=1?

1 Answer
Oct 24, 2014

By the trig identities

cos^2x+sin^2x=1 Rightarrow sin^2x=1-cos^2xcos2x+sin2x=1sin2x=1cos2x

and

1+cot^2x=csc^2x=1/{sin^2x}1+cot2x=csc2x=1sin2x,

we have

(1-cos^2x)(1+cot^2x)=sin^2x cdot 1/{sin^2x}=1(1cos2x)(1+cot2x)=sin2x1sin2x=1.


I hope that this was helpful.