How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Kalyanam S. May 28, 2018 As proved Explanation: I suppose the sum is (2 sin x) / (sec x (cos^4 x - sin ^4 x)) = tan 2x => (2 sin x cos x) / ((cos^2 x + sin-^2x)* (cos ^2x - sin^2x)) color(crimson)(sin 2x = 2 sin x cos x, identity color(crimson)(cos^2 x + sin ^2 x -= 1, identity color(crimson)(cos^2x - sin^2 x = cos 2x, identity :. => (sin 2x) / (cos 2x) = tan 2x = R H S Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? How do you prove the identity tan^2x/(secx+1)= (1-cosx)/cosx? See all questions in Proving Identities Impact of this question 20475 views around the world You can reuse this answer Creative Commons License