How do you use trig identities to show that this is true? tan^3x/(1+tan^2x)+cot^3x/(1+cot^2x)=(1-2cos^2x sin^2x)/(sinxcosx)

I'm am not sure how to prove that this is true

2 Answers
May 1, 2018

LHS=tan^3x/(1+tan^2x)+cot^3x/(1+cot^2x)

=(sin^3x/cos^3x)/sec^2x+(cos^3x/sin^3x)/csc^2x

=(sin^3x/cos^3x)/(1/cos^2x)+(cos^3x/sin^3x)/(1/sin^2x)

=sin^3x/cosx+cos^3x/sinx

=(sin^4x+cos^4x)/(sinx cosx)

=((sin^2x+cos^2x)^2-2sin^2xcos^2x)/(sinx cosx)

=(1-2cos^2x sin^2x)/(sinxcosx)=RHS

May 1, 2018

We seek to prove the identity:

(tan^3x)/(1+tan^2x)+(cot^3x)/(1+cot^2x) -=(1-2cos^2x sin^2x)/(sinxcosx)

Consider the LHS:

LHS= (tan^3x)/(1+tan^2x)+(cot^3x)/(1+cot^2x)

\ \ \ \ \ \ \ \ = (tan^3x)/(sec^2x)+(cot^3x)/(csc^2x)

\ \ \ \ \ \ \ \ = (sin^3x/cos^3x)(cos^2x)+(cos^3x/sin^3x)sin^2x

\ \ \ \ \ \ \ \ = sin^3x/cosx+cos^3x/sinx

\ \ \ \ \ \ \ \ = ((sin^3x)(sinx) +(cos^3x)(cosx))/(sinxcosx)

\ \ \ \ \ \ \ \ = (sin^4x +cos^4x)/(sinxcosx)

\ \ \ \ \ \ \ \ = (sin^2xsin^2x +cos^2xcos^2x)/(sinxcosx)

\ \ \ \ \ \ \ \ = ((1-cos^2x)sin^2x +(1-sin^2x)cos^2x)/(sinxcosx)

\ \ \ \ \ \ \ \ = ((sin^2x-sin^2xcos^2x) +(cos^2x-sin^2xcos^2x))/(sinxcosx)

\ \ \ \ \ \ \ \ = (sin^2x+cos^2x-2sin^2xcos^2x)/(sinxcosx)

\ \ \ \ \ \ \ \ = (1-2sin^2xcos^2x)/(sinxcosx)

\ \ \ \ \ \ \ \ = RHS \ \ \ QED