Prove the trigonometric identity? tanx(1-cot^2x)+cotx(1-tan^2x)=0

2 Answers
Jul 17, 2016

Prove trig identity.

Explanation:

Replace in the equation tan x = (sin x)/(cos x), and cot x = (cos x)/(sin x)
(sin x)/(cos x)(1 - (cos^2 x)/(sin^2 x)) + (cos x)/(sin x) (1 - sin^2 x/(cos^2 x)) =
(sin x)/(cos x) - (cos x)/(sin x) + (cos x)/(sin x) - (sin x)/(cos x) = 0 OK

Jul 17, 2016

Applying identity tanxcotx=1

LHS=tanx(1-cot^2x)+cotx(1-tan^2x)

=tanx-tanxcot^2x+cotx-cotxtan^2x

=tanx-1*cotx+cotx-1*tanx

=0=RHS

Proved