PROVE THAT : [sinA /1-cosA - 1-cosA/sinA ][cosA/1+sinA + 1+sinA/cosA] = 4cosecA.?

1 Answer
Oct 24, 2016

LHS=[sinA/(1-cosA)-(1-cosA)/sinA][cosA/(1+sinA)+(1+sinA)/cosA]

Now 1st part= sinA/(1-cosA) -(1-cosA)/sinA

=(sinA(1+cosA))/((1-cosA)(1+cosA))-(1-cosA)/sinA

=(sinA(1+cosA))/(1-cos^2A) -(1/sinA-cosA/sinA)

=(sinA(1+cosA))/sin^2A-cscA+cotA

=(1+cosA)/sinA -cscA+cotA

=1/sinA+cosA/sinA -cscA+cotA

=cscA+cotA -cscA+cotA

=2cotA

2nd part

=cosA/(1+sinA)+(1+sinA)/cosA

=(cosA(1-sinA))/((1+sinA)(1-sinA))+(1/cosA+sinA/cosA)

=(cosA(1-sinA))/(1-sin^2A)+(secA+tanA)

=(cosA(1-sinA))/cos^2A+(secA+tanA)

=(1-sinA)/cosA+(secA+tanA)

=1/cosA-sinA/cosA+secA+tanA

=secA-tanA+secA+tanA

=2secA

Whole LHS

=2cotAxx2secA

=(4cosA)/sinAxx1/cosA

=4/sinA=4cscA=RHS

Proved