LHS=[sinA/(1-cosA)-(1-cosA)/sinA][cosA/(1+sinA)+(1+sinA)/cosA]
Now 1st part= sinA/(1-cosA) -(1-cosA)/sinA
=(sinA(1+cosA))/((1-cosA)(1+cosA))-(1-cosA)/sinA
=(sinA(1+cosA))/(1-cos^2A)
-(1/sinA-cosA/sinA)
=(sinA(1+cosA))/sin^2A-cscA+cotA
=(1+cosA)/sinA -cscA+cotA
=1/sinA+cosA/sinA -cscA+cotA
=cscA+cotA -cscA+cotA
=2cotA
2nd part
=cosA/(1+sinA)+(1+sinA)/cosA
=(cosA(1-sinA))/((1+sinA)(1-sinA))+(1/cosA+sinA/cosA)
=(cosA(1-sinA))/(1-sin^2A)+(secA+tanA)
=(cosA(1-sinA))/cos^2A+(secA+tanA)
=(1-sinA)/cosA+(secA+tanA)
=1/cosA-sinA/cosA+secA+tanA
=secA-tanA+secA+tanA
=2secA
Whole LHS
=2cotAxx2secA
=(4cosA)/sinAxx1/cosA
=4/sinA=4cscA=RHS
Proved