Prove that ??(Sinx+Sin2x+Sin3x)/(cosx+cos2x+cos3x) = tan2xsinx+sin2x+sin3xcosx+cos2x+cos3x=tan2x

1 Answer
May 11, 2018

LHS=(sinx+sin2x+sin3x)/(cosx+cos2x+cos3x)LHS=sinx+sin2x+sin3xcosx+cos2x+cos3x

=(2sin((3x+x)/2)*cos((3x-x)/2)+sin2x)/(2cos((3x+x)/2)*cos((3x-x)/2)+cos2x=2sin(3x+x2)cos(3xx2)+sin2x2cos(3x+x2)cos(3xx2)+cos2x

=(2sin2x*cosx+sin2x)/(2cos2x*cosx+cos2x)=2sin2xcosx+sin2x2cos2xcosx+cos2x

=(sin2xcancel((1+2cosx)))/(cos2xcancel((1+2cosx)))

=tan2x=RHS