LHS=(sinx+sin2x+sin3x)/(cosx+cos2x+cos3x)LHS=sinx+sin2x+sin3xcosx+cos2x+cos3x
=(2sin((3x+x)/2)*cos((3x-x)/2)+sin2x)/(2cos((3x+x)/2)*cos((3x-x)/2)+cos2x=2sin(3x+x2)⋅cos(3x−x2)+sin2x2cos(3x+x2)⋅cos(3x−x2)+cos2x
=(2sin2x*cosx+sin2x)/(2cos2x*cosx+cos2x)=2sin2x⋅cosx+sin2x2cos2x⋅cosx+cos2x
=(sin2xcancel((1+2cosx)))/(cos2xcancel((1+2cosx)))
=tan2x=RHS