Simplifying #(-x^3-2x^2-12x+2)/(x-4)#
by synthetic division:
#{:
(," | ",color(gray)(x^3),color(grey)(x^2),color(gray)(x^1),color(grey)(x^0)),
(," | ",-1,-2,-12,+2),
(ul(+color(white)("xx"))," | ",ul(color(white)("XX")),ul(-4),ul(-24),ul(-124)),
(xx4," | ",-1,-6,-36,-126),
(,,color(gray)(x^2),color(gray)(x^1),color(gray)(x^0),color(gray)(x^(-1)))
:}#
#f(x)=-x^2-6x-36-126x^(-1)#
#f'(x)=2x-6color(white)("xx")+126x^(-2)#
#f'(3) = -6 -6 +126/(3^2)#
#color(white)("XXX")=12+14#
#color(white)("XXX")=+2#
Since #f'(x) > 0# at #x=3#
#f(x)# is increasing at #x=3#