Simplifying (-x^3-2x^2-12x+2)/(x-4)
by synthetic division:
{:
(," | ",color(gray)(x^3),color(grey)(x^2),color(gray)(x^1),color(grey)(x^0)),
(," | ",-1,-2,-12,+2),
(ul(+color(white)("xx"))," | ",ul(color(white)("XX")),ul(-4),ul(-24),ul(-124)),
(xx4," | ",-1,-6,-36,-126),
(,,color(gray)(x^2),color(gray)(x^1),color(gray)(x^0),color(gray)(x^(-1)))
:}
f(x)=-x^2-6x-36-126x^(-1)
f'(x)=2x-6color(white)("xx")+126x^(-2)
f'(3) = -6 -6 +126/(3^2)
color(white)("XXX")=12+14
color(white)("XXX")=+2
Since f'(x) > 0 at x=3
f(x) is increasing at x=3