Calling u = sin x and v = sin y we have
{
(u + v = a),
(sqrt(1-u^2)+sqrt(1-v^2) = b)
:}
or
{
(u + v = a),
(sqrt(1-(a-v)^2)+sqrt(1-v^2) = b)
:}
squaring the second equation
1-a^2-v^2-2av = b^2+1-v^2-2bsqrt(1-v^2)
or
2bsqrt(1-v^2) = b^2+a^2-2av
squaring again
4b^2(1-v^2)=(b^2+a^2)^2+4a^2v^2-4(a^2+b^2)av
and
4(a^2+b^2)v^2-4(a^2+b^2)av+(b^2+a^2)^2-4b^2=0
Solving for v we obtain
v = 1/2 (a pm abs(b)sqrt( 4 -(a^2 + b^2)))
and
u = a - v = 1/2 (a -(pm abs(b)sqrt( 4 -(a^2 + b^2))))
Finally
y = arcsin(1/2 (a + abs(b)sqrt( 4 -(a^2 + b^2)))) and
x = arcsin(1/2 (a - abs(b)sqrt( 4 -(a^2 + b^2))))