How would you verify the identity #(secx-cosx+tanx)/(tanx+secx)=sinx#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Binayaka C. Jul 1, 2018 LHS= RHS (Verified) Explanation: # (sec x -cos x + tan x)/(tan x +sec x)# #= (1/cos x -cos x + sin x/cos x)/(sin x/cos x +1/ cos x)# #= ((1 -cos^2 x + sin x)/cancel cos x)/((sin x +1)/ cancelcos x)# #= (sin ^2 x + sin x)/((sin x +1)# #= (sin x cancel(( sin x +1)))/(cancel(sin x +1))# #=sin x# (Verified) [Ans] Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 3548 views around the world You can reuse this answer Creative Commons License