How do you write polar coordinates of (-sqrt 3, 3)(3,3)?

1 Answer

The polar coodinates : (r, theta)=(2sqrt3, 120^@)(r,θ)=(23,120)

Explanation:

Given: the rectangular coordinates (-sqrt3, 3)(3,3)

this means x=-sqrt3x=3 and y=3y=3

Convert now to Polar corrdinate system:

Compute rr:

r=sqrt(x^2+y^2)=sqrt((-sqrt3)^2+3^2)=sqrt(3+9)=sqrt(12)r=x2+y2=(3)2+32=3+9=12

r=sqrt(4(3))r=4(3)

r=2sqrt3r=23

Compute the angle thetaθ:

theta=tan^-1(y/x)=tan^-1(3/-sqrt3)=120^@θ=tan1(yx)=tan1(33)=120

The polar coodinates : (r, theta)=(2sqrt3, 120^@)(r,θ)=(23,120)

Have a nice day!!! from the Philippines...