How do I convert Cartesian coordinates to polar coordinates?

1 Answer
Aug 19, 2014

Wikimedia

Let's look at the trig formulas SYR, CXR, TYX:

sin theta = y/r
cos theta = x/r
tan theta = y/x

Since we are given the Cartesian coordinates, we are given x and y. For polar coordinates, we need to figure out r and theta. r is easy, we just use Pythagorean:

r=sqrt(x^2+y^2)

To figure out theta, I like to use cosine because the range of arccosine is in quadrants I and II and adjusting theta' is easier. So,

theta'=cos^(-1)x/r

If y>=0 then theta=theta'.
If y<0 then theta=2 pi - theta' (in radians) or theta=360-theta' (in degrees).

Our final answer is (r, theta).

Let's look at a concrete example: Convert (-3, 3sqrt3) to polar coordinates:

r=sqrt((-3)^2+(3sqrt3)^2)=sqrt(36)=6
theta'=cos^(-1)((-3)/6)=(2pi)/3
y<0 so, theta=2pi-(2pi)/3=(4pi)/3

So the polar coordinates are (6, (4pi)/3).