The answer is: (3sqrt2,pi/2,3/4pi)(3√2,π2,34π).
To change the coordinates from rectangular to spherical we have to use these formulae:
rho=sqrt(x^2+y^2+z^2)ρ=√x2+y2+z2;
phi=arctan(y/x)ϕ=arctan(yx);
theta=arccos(z/sqrt(x^2+y^2+z^2))θ=arccos(z√x2+y2+z2).
So:
rho=sqrt(0^2+3^2+3^2)=sqrt18=3sqrt2ρ=√02+32+32=√18=3√2;
phi=arctan(3/0)=arctan(oo)=pi/2ϕ=arctan(30)=arctan(∞)=π2;
theta=arccos((-3)/sqrt(0^2+3^2+3^2))=arccos(-3/(3sqrt2))=arccos(-1/sqrt2*sqrt2/sqrt2)=arccos(-sqrt2/2)=3/4piθ=arccos(−3√02+32+32)=arccos(−33√2)=arccos(−1√2⋅√2√2)=arccos(−√22)=34π.
So the point becomes: (3sqrt2,pi/2,3/4pi)(3√2,π2,34π).