How do you change (0,3,-3) from rectangular to spherical coordinates?

1 Answer
Feb 3, 2015

The answer is: (3sqrt2,pi/2,3/4pi)(32,π2,34π).

To change the coordinates from rectangular to spherical we have to use these formulae:

rho=sqrt(x^2+y^2+z^2)ρ=x2+y2+z2;
phi=arctan(y/x)ϕ=arctan(yx);
theta=arccos(z/sqrt(x^2+y^2+z^2))θ=arccos(zx2+y2+z2).

So:

rho=sqrt(0^2+3^2+3^2)=sqrt18=3sqrt2ρ=02+32+32=18=32;

phi=arctan(3/0)=arctan(oo)=pi/2ϕ=arctan(30)=arctan()=π2;

theta=arccos((-3)/sqrt(0^2+3^2+3^2))=arccos(-3/(3sqrt2))=arccos(-1/sqrt2*sqrt2/sqrt2)=arccos(-sqrt2/2)=3/4piθ=arccos(302+32+32)=arccos(332)=arccos(1222)=arccos(22)=34π.

So the point becomes: (3sqrt2,pi/2,3/4pi)(32,π2,34π).