How do you write 64=4^x in Logarithm form?

2 Answers
Sep 1, 2016

log_4 64 = x

Explanation:

(this follows from the basic definition of log)

Sep 1, 2016

log_color(red)(a) color(blue)(b) = color(lime)(c) hArr color(red)(a)^color(lime)(c) = color(blue)(b)

log_color(red)(4) color(blue)(64) = color(lime)(x) hArr color(red)(4)^color(lime)(x) = color(blue)(64)

"The color(red)("base") stays the color(red)("base"), and the other two change around"

Explanation:

log form and index form are interchangeable:

By definition: log_color(red)(a) color(blue)(b) = color(lime)(c) hArr color(red)(a)^color(lime)(c) = color(blue)(b)

Remember the following:

"The color(red)("base") stays the color(red)("base"), and the other two change around"

log_color(red)(4) color(blue)(64) = color(lime)(x) hArr color(red)(4)^color(lime)(x) = color(blue)(64)

log_color(red)(4) color(blue)(64) = color(lime)(3) hArr color(red)(4)^color(lime)(3) = color(blue)(64)