How do you verify the identity (tanx - secx + 1)/(tanx + secx - 1) = cosx/(1 + sinx)?

1 Answer
Apr 30, 2018

LHS=(tanx - secx + 1)/(tanx + secx - 1)

=(tanx - secx + 1)/(tanx + secx - (sec^2x-tan^2x))

=(tanx - secx + 1)/(tanx + secx - (secx-tanx)(secx+tanx))

=(cancel(tanx - secx + 1))/((tanx + secx)(cancel(1 - secx+tanx))

=1/(secx+tanx)

=1/(1/cosx+sinx/cosx)

=1/((1+sinx)/cosx)

= cosx/(1 + sinx)=RHS

Alternative method

LHS=(tanx - secx + 1)/(tanx + secx - 1)

=(cos^2x(tanx - secx + 1))/(cos^2x(tanx + secx - 1))

=(cosx(sinx/cosx*cosx - 1/cos*cosx + cosx))/(cos^2x*sinx/cosx + cos^2x*1/cosx - cos^2x)

=(cosx(sinx- 1 + cosx))/(cosx*sinx + cosx - (1-sin^2x))

=(cosx(sinx- 1 + cosx))/(cosx(sinx + 1) - (1-sinx)(1+sinx))

=(cosx(sinx- 1 + cosx))/((1+sinx)(cosx - 1+sinx))

=cosx/(1+sinx) =RHS