LHS=(tanx - secx + 1)/(tanx + secx - 1)
=(tanx - secx + 1)/(tanx + secx - (sec^2x-tan^2x))
=(tanx - secx + 1)/(tanx + secx - (secx-tanx)(secx+tanx))
=(cancel(tanx - secx + 1))/((tanx + secx)(cancel(1 - secx+tanx))
=1/(secx+tanx)
=1/(1/cosx+sinx/cosx)
=1/((1+sinx)/cosx)
= cosx/(1 + sinx)=RHS
Alternative method
LHS=(tanx - secx + 1)/(tanx + secx - 1)
=(cos^2x(tanx - secx + 1))/(cos^2x(tanx + secx - 1))
=(cosx(sinx/cosx*cosx - 1/cos*cosx + cosx))/(cos^2x*sinx/cosx + cos^2x*1/cosx - cos^2x)
=(cosx(sinx- 1 + cosx))/(cosx*sinx + cosx - (1-sin^2x))
=(cosx(sinx- 1 + cosx))/(cosx(sinx + 1) - (1-sinx)(1+sinx))
=(cosx(sinx- 1 + cosx))/((1+sinx)(cosx - 1+sinx))
=cosx/(1+sinx) =RHS