How do you verify the identity sqrt((1-costheta)/(1+costheta))=(1-costheta)/abssintheta?

1 Answer
Jan 19, 2017

All you really have to do is multiply by sqrt(1 - costheta)/sqrt(1 - costheta):

=> sqrt((1 - costheta)/(1 + costheta))sqrt(1 - costheta)/sqrt(1 - costheta)

= (1 - costheta)/(sqrt((1 + costheta)(1 - costheta)))

From the difference of two squares, we get:

= (1 - costheta)/(sqrt(1 - cos^2theta))

From the identity sin^2theta + cos^2theta = 1, we get:

= (1 - costheta)/(sqrt(sin^2theta))

From the definition sqrt(u^2) = |u|, we get:

= color(blue)((1 - costheta)/|sintheta|) color(blue)(sqrt"")

since the square root of u^2 is necessarily positive.