How do you verify the identity (sin^4beta-2sin^2beta+1)cosbeta=cos^5beta?

1 Answer
Jan 26, 2017

see below

Explanation:

Left Hand Side:
=(sin^4beta-2sin^2beta+1)cosbeta

Note that sin^4beta-2sin^2beta+1 looks like x^4-2x^2+1 so we can factor it.

The factors are:
(sin^2 beta-1)(sin^2beta-1) = (sin^2beta-1)^2

Hence,
=(sin^2 beta -1)^2 cos beta

=[-1(1-sin^2 beta)]^2 cos beta

=(1-sin^2beta)^2cos beta; Use identity sin^2 beta + cos^2 beta =1

=(cos^2 beta)^2 cos beta

=cos^4 beta cos beta

=cos^5 beta

:. = Right Hand Side