How do you verify the identity (sin^3beta+cos^3beta)/(sinbeta+cosbeta)=1-sinbetacosbeta?
1 Answer
see explanation.
Explanation:
There are 3 approaches to verifying the identity.
• Manipulate the left side into the form of the right side
• Manipulate the right side into the form of the left side
• Manipulate both sides until a point is reached where they are
color(white)(x)"both equal" Using the first approach.
"left side "=(sin^3beta+cos^3beta)/(sinbeta+cosbeta) The numerator is a
color(blue)"sum of cubes" and can be factorised in general as follows.
color(red)(bar(ul(|color(white)(2/2)color(black)(a^3+b^3=(a+b)(a^2+ab+b^2))color(white)(2/2)|)))
"here " a=sinbeta" and " b=cosbeta
rArrsin^3beta+cos^3beta=
=(sinbeta+cosbeta)(sin^2beta-sinbetacosbeta+cos^2beta) The left side can now be simplified.
((cancel(sinbeta+cosbeta))(sin^2beta-sinbetacosbeta+cos^2beta))/(cancel(sinbeta+cosbeta))
=sin^2beta-sinbetacosbeta+cos^2beta
"Using the identity " color(red)(bar(ul(|color(white)(2/2)color(black)(sin^2beta+cos^2beta=1)color(white)(2/2)|)))
"Then" sin^2beta-sinbetacosbeta+cos^2beta=1-sinbetacosbeta
"Thus left side = right side "rArr"verified"