How do you verify the identity cscx(cscx-sinx)+(sinx-cosx)/sinx+cotx=csc^2x?

1 Answer
Jan 17, 2017

see below

Explanation:

Left Hand Side:

cscx(cscx-sinx)+(sinx-cosx)/sinx + cotx = csc^2x-cscxsinx+(sinx-cosx)/sinx + cotx

=csc^2x-(1/sinx)sinx+(sinx-cosx)/sinx + cosx/sinx

=csc^2x-(1/cancel (sinx))cancel (sinx)+(sinx-cancelcosx+ cancelcosx)/sinx

=csc^2x-1+sinx/sinx

Use identity: 1+cot^2x=csc^2x

=cot^2x+cancelsinx/cancelsinx

=cot^2x+1

=csc^2x

:.= Right Hand Side