We have: (csc(theta) - cot(theta)) (csc(theta) + cot(theta))
Let's expand the parentheses:
= (csc(theta)) (csc(theta)) + (csc(theta)) (cot(theta)) + ( - cot(theta) (csc(theta)) + (- cot(theta)) (cot(theta))
= csc^(2)(theta) + csc(theta) cot (theta) - csc(theta) cot(theta) - cot^(2)(theta)
csc^(2)(theta) - cot^(2)(theta)
Then, let's apply two standard trigonometric identities; csc(theta) = (1) / (sin(theta)) and cot(theta) = (cos(theta)) / (sin(theta)):
= ((1) / (sin(theta)))^(2) - ((cos(theta)) / (sin(theta)))^(2)
= (1) / (sin^(2)(theta)) - (cos^(2)(theta)) / (sin^(2)(theta))
= (1 - cos^(2)(theta)) / (sin^(2)(theta))
One of the Pythagorean identities is cos^(2)(theta) + sin^(2)(theta) = 1.
We can rearrange this to get:
=> sin^(2)(theta) = 1 - cos^(2)(theta)
Let's apply this rearranged identity to our proof:
= (sin^(2)(theta)) / (sin^(2)(theta))
=1 (Q.E.D.)