How do you verify the identity (csctheta-cottheta)^2=(1-costheta)/(1+costheta)?

1 Answer
Aug 21, 2016

the identity is verified

Explanation:

Since csctheta=1/sintheta and cottheta=costheta/(sintheta),

you can substitute and have:

(csctheta-cottheta)^2=(1/sintheta-costheta/(sintheta))^2

=((1-costheta)/(sintheta))^2=(1-costheta)^2/(sin^2theta)

Since sin^2theta=1-cos^2theta, the expression becomes:

=(1-costheta)^2/(1-cos^2theta)=(1-costheta)^cancel2/(cancel((1-costheta))(1+costheta))=(1-costheta)/(1+costheta)

and the identity is verified