How do you verify the identity csc^4theta-cot^4theta=2cot^2theta+1? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 7, 2016 see below Explanation: csc^4 theta-cot^4 theta = 2 cot^2 theta + 1 Left Side : =csc^4 theta-cot^4 theta =(csc^2 theta-cot^2theta)(csc^2 theta+cot^2 theta) =1* (csc^2 theta+cot^2 theta) =csc^2 theta+cot^2 theta =1+cot^2 theta + cot^2 theta =1+2 cot ^2 theta =2 cot ^2 theta+1 :.= Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 4620 views around the world You can reuse this answer Creative Commons License