How do you verify the identity cotalpha+tanalpha=cscalphasecalpha?

1 Answer
Jan 19, 2017

See proof below

Explanation:

cos^2alpha+sin^2alpha=1

cotalpha=cosalpha/sinalpha

tanalpha=sinalpha/cosalpha

cscalpha=1/sinalpha

secalpha=1/cosalpha

Therefore,

LHS=cotalpha+tanalpha

=cosalpha/sinalpha+sinalpha/cosalpha

=(cos^2alpha+sin^2alpha)/(sinalphacosalpha)

=1/(sinalphacosalpha)

=cscalphasecalpha

=RHS

QED