How do you verify the identity (cot^2x-1)/(1+cot^2x)=1-2sin^2x?
1 Answer
see explanation.
Explanation:
We attempt to express the left side in the same form as the right side.
Let's begin by rewritingcot^2x
color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cotx=(cosx)/(sinx))color(white)(a/a)|)))
rArr((cos^2x)/(sin^2x)-1)/(1+cos^2x/(sin^2x) now multiply all terms on numerator and denominator by
sin^2x
rArr(cos^2x-sin^2x)/(sin^2x+cos^2x) .......(A) To simplify we require the
color(blue)"trigonometric identities"
color(orange)"Reminder"
color(red)(|bar(ul(color(white)(a/a)color(black)(cos2x=cos^2x-sin^2x=1-2sin^2x)color(white)(a/a)|))) and
color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|))) Substituting these into (A) gives.
cos2x=1-2sin^2x Thus left side = right side
rArr" verified"