How do you verify the identity (cot^2x-1)/(1+cot^2x)=1-2sin^2x?

1 Answer
Sep 5, 2016

see explanation.

Explanation:

We attempt to express the left side in the same form as the right side.
Let's begin by rewriting cot^2x

color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(cotx=(cosx)/(sinx))color(white)(a/a)|)))

rArr((cos^2x)/(sin^2x)-1)/(1+cos^2x/(sin^2x)

now multiply all terms on numerator and denominator by sin^2x

rArr(cos^2x-sin^2x)/(sin^2x+cos^2x) .......(A)

To simplify we require the color(blue)"trigonometric identities"

color(orange)"Reminder"

color(red)(|bar(ul(color(white)(a/a)color(black)(cos2x=cos^2x-sin^2x=1-2sin^2x)color(white)(a/a)|)))

and color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))

Substituting these into (A) gives.

cos2x=1-2sin^2x

Thus left side = right side rArr" verified"